# Global Integrated Sachs-Wolfe Significance: An Exercise in Method & Hubris

Ryan Scranton

3 July 2006

#### It Seemed Like a Good Idea at the Time...

Date: Fri, 5 May 2006 17:54:32 -0400 (EDT)

From: Ryan Scranton <scranton@bruno.phyast.pitt.edu>

To: Albert Stebbins <stebbins@fnal.gov>

Hey Albert...

As for the conference, I'm not entirely certain what I'm going to talk about. I'm toying with the idea of doing a global measurement of the ISW using 2MASS, SDSS, and FIRST/NVSS using the Teragrid. Given the fact that I was able to do the LRG stuff in less than 24 hours, I think I can do it all by the end of next week.

-Ryan

#### **ISW** in 2 Minutes

- After matter-radiation equality, dark matter falls into potential wells set up during inflation. For ΛCDM, universe expands faster than potentials grow
- CMB photons passing through potentials see net blue-shift in energy ⇒ Integrated
   Sachs-Wolfe Effect
- Increases CMB autocorrelation at small l and induces positive correlation with galaxies



PhysicsWeb

#### Thermal Sunyaev-Zel'dovich Effect

- Hot electron gas surrounds galaxy filaments and clusters
- CMB photons inverse Compton scatter off of electrons, shifting photons to higher energies
- CMB in Rayleigh-Jeans region of original spectrum gives observed temperature decrement ⇒ anti-correlation with foreground structure



Global ISW

#### **Expected Signal**

- Expect ISW to dominate on large angles, SZ to become important on smaller angles
- 2 free parameters in linear theory: galaxy bias  $(\delta_{gal} = b_{gal}\delta_{DM})$  and electron gas-bias  $(T_eb_P)$ .  $b_{gal}$  controls overall amplitude of the signal and  $T_eb_P$  determines the relative importance of the SZ effect
- Very important to maximize sky coverage (cosmic variance) and keep Poisson noise low



#### The Plan

- Collect footprints & galaxy data from 2MASS, SDSS, FIRST and NVSS
- 15 total maps covering 0 < z < 2.5:
  - \* 3 2MASS magnitude limited samples (10.5 < k < 11.5, 11.5 < k < 12.5, 12.5 < k < 13.5)
  - $\star$  5 magnitude limited SDSS galaxy samples over 16 < r < 21
  - ★ 3 SDSS LRG redshift slices
  - ⋆ NVSS radio galaxies
  - $\star$  2 FIRST samples (star forming galaxies with flux <10 mJy, AGNs with flux >50 mJy)
  - $\star$  Photometric SDSS QSOs with 1 < z < 2.5
- Cross-correlate with smoothed 3 year WMAP w channel map
- Generate global covariance matrix using 10,000 CMB realizations on Teragrid

## STOMP: Space and Time Ordered Mapping Package http://nvogre.phyast.pitt.edu/gestalt/

- All cosmological statistics are measurements of spatial properties (area, angular distance, density)
- Describe complex geometries on the sphere and possibly spatial variations
- Find unions, intersections, and overlaps between large numbers of observations
- It has to be fast



#### **STOMP: Space and Time Ordered Mapping Package**





- Pixelize arbitrary survey footprints with 1" resolution
- Hierarchical scheme: extremely rapid localization & efficient angular statistics.
- All footprints & analysis done with current STOMP code

## **CMB Side**



WMAP w channel

Global ISW

#### **CMB Side**



WMAP w channel – smoothed to  $1^{\circ}$ 

#### **CMB Side**



WMAP w channel – smoothed & masked (??)



2MASS



2MASS - |b| > 20

## DIRBE



SFD E(B-V) dust emission



 $2MASS - |b| > 20, A_k < 0.03$ 



2MASS Over-Density – 10.5 < k < 11.5,  $z \sim 0.05$ 



2MASS Over-Density — 12.5 < k < 13.5,  $z \sim 0.1$ 

## **NVSS**



NVSS

## **NVSS**



 $\mathsf{NVSS} - |b| > 20$ 

### **NVSS**



NVSS Over-Density – |b| > 20



FIRST



FIRST Background Flux

Global ISW



FIRST - background flux  $< 0.17~{\rm mJy}$ 



FIRST – flux > 50 mJy (AGNs with  $z \sim 1.5$ )



FIRST – flux < 10 mJy (star-forming galaxies with  $z \sim 1$ )

Global ISW



SDSS DR5 Photometric Survey



SDSS DR5 Photometric Survey – Seeing

Global ISW



SDSS DR5 Photometric Survey – Reddening



SDSS DR5 Photometric Survey – Sky Brightness



SDSS DR5 Photometric Survey – Masked against systematics



SDSS DR5 Magnitude-Limited (20 < r < 21,  $z \sim 0.3$ )



SDSS DR5 LRG ( $z\sim0.55$ )

#### **SDSS Photometric QSOs**



SDSS DR4 Photometric Survey –  $A_g < 0.15$ 



SDSS DR4 Photometric QSOs (1 < z < 2.5)

Global ISW

#### **Results: 2MASS**





- Strong SZ signal at small angles; increasing as  $z \to 0$
- $\chi^2=59.8$  for 45 angular bins:  $1.3\sigma$

#### **Results: SDSS Magnitude Limited**





- Increasing S/N as z increases
- $\chi^2=136.4$  for 75 angular bins:  $3.0\sigma$

#### **Results: SDSS LRGs**





- Dropped lowest redshift bin from Scranton et al (2003); lower S/N
- $\chi^2=87.2$  for 45 angular bins:  $2.7\sigma$

#### Results: High Redshift





- Huge  $\chi^2$  for NVSS; probably contaminated.
- $\chi^2=130.7$  for 60 angular bins:  $3.6\sigma$

### Results: Global Sample 0 < z < 2.5



#### Results: Global Sample 0 < z < 2.5



- Significant anti-correlations; magnification bias? Quite possibly (LoVerde, Hui & Gaztanaga, in preparation).
- $\chi^2=461.5$  for 225 angular bins:  $6.2\sigma$  (5.3 $\sigma$  w/o NVSS)

#### **Summary**

 Current set of surveys all demonstrate ISW signal to one degree or another, but the S/N of any given survey remains relatively small.

- Combining the detections from multiple surveys increases the overall S/N to roughly  $5\sigma$
- Part of this increase appears to be due magnification bias between samples at different redshifts. Depending on the sample, magnification can be a significant or even dominant part of the total signal at high z.
- While the tools and resources exist to do this measurement quickly and efficiently, one should probably budget more than 20 days next time.

#### Two Effects of Gravitational Lensing



• Weak lensing of background sources introduces shear and magnification

#### Two Effects of Gravitational Lensing



• Magnification  $(\mu)$  increases flux (amplification); decreases density (dilution).

#### **Quantifying Cosmic Magnification**

• If we are in the weak lensing regime ( $\mu \approx 1$ ),

$$w_{\text{GQ}}(\theta) = 12\pi^2 \Omega_M(\alpha(m) - 1) \int d\chi \, dk \, k \, \mathcal{K}(k, \theta, \chi) \, P_{gm}(k, \chi)$$
$$= (\alpha(m) - 1) \times w_0(\theta), \tag{1}$$

where  $\alpha(m)$  is the power-law slope of the QSO number counts,  $\mathcal{K}$  depends on the foreground and background redshift distributions and  $P_{gm}(k)$  is the galaxy-dark matter power spectrum.

• For  $\alpha(m)>1$ , increasing amplification outweighs the dilution effect, yielding a positive cross-correlation. For  $\alpha(m)<1$ , dilution wins and the cross-correlation is negative.

#### **Magnification & ISW**

Standard ISW redshift kernel:

$$\mathcal{K}_{ISW} \sim \int d\chi W_G(\chi) \frac{\partial}{\partial \chi} \left[ \frac{D(\chi)}{a(\chi)} \right]$$
 (2)

where  $\chi$  is the comoving distance,  $W_G(\chi)$  is the redshift distribution of the galaxies and  $D(\chi)$  is the linear growth factor. For  $\Lambda$ CDM, potential decay peaks at z=0, so amplitude increases as  $z\to 0$ .

• Magnification (convergence) kernel:

$$\mathcal{K}_{\kappa} \sim (\alpha - 1) \int d\chi W_F(\chi) \frac{g_B(\chi)}{a}$$
 (3)

where

$$g_B(\chi) = \int d\chi' \frac{\chi(\chi' - \chi)}{\chi'} W_B(\chi') \tag{4}$$

Magnification-ISW kernel:

$$\mathcal{K}_{ISW,\kappa} \sim (\alpha - 1) \int d\chi \frac{g_G(\chi)}{a} \frac{\partial}{\partial \chi} \left[ \frac{D(\chi)}{a(\chi)} \right]$$
 (5)

- For  $\alpha 1 \neq 0$  and z > 0.5, the pure ISW effect falls off sharply as  $\Omega_{\Lambda} \to 0$ . Magnification is generated by foreground structure at lower redshift potentials where the decay is large, hence its contribution increases, relatively.
- For field galaxies  $\alpha 1 \approx 0$ , so need to choose galaxy subsets like LRGs, QSO or radio galaxies (or use an optimal estimator (?)).

#### **Graphic Magnification**



Redshift Dependencies for QSOs



**Prelminary** Results with SDSS QSOs